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Compulsory Part

1. G is a group of order 6, to show that G ∼= Z6, it suffices to find a generator of order 6.
Note that under the group operation, 22 = 4, 23 = 8, 24 = 7, 25 = 5 and 26 = 1. Thus
G = ⟨2⟩, therefore there exists a group isomorphism Z6 → G by 1 7→ 2.

2. Let ϕ : G→ G′ be a bijective group homomorphism, suppose x, y ∈ G′, then there exists
unique g, h ∈ G such that ϕ(g) = x and ϕ(h) = y. Then ϕ−1(xy) = ϕ−1(ϕ(g)ϕ(h)) =
ϕ−1(ϕ(gh)) = gh = ϕ−1(x)ϕ−1(y). And we have ϕ−1(x−1)ϕ−1(x) = ϕ−1(x−1x) =
ϕ−1(e) = e, therefore ϕ−1(x−1) is the inverse of ϕ−1(x), i.e. ϕ−1(x−1) = ϕ−1(x)−1.

3. (a) Since the group operation is given by matrix multiplication, it is associative. It
suffices to compute the products and inverse of the elements and show that they

are in G. Denote A =

(
0 1
1 0

)
, then G = {I,−I, A,−A}. It is clear that I is

the identity element since it is the identity matrix. And −I · A = A · (−I) =
−A, (−I) · (−A) = (−A) · (−I) = A; (−I)2 = A2 = (−A)2 = I; and A · (−A) =
(−A) ·A = I . In particular, every non-identity element has order 2, so they are their
own inverses. So G forms a group.

(b) Define φ : Z2×Z2 → G by φ(1, 0) = A,φ(0, 1) = −I and φ(1, 1) = −A. Then we
claim that φ is an isomorphism. Indeed, φ is a group homomorphism by the calcula-
tions in part (a), for example φ((1, 0)+(0, 1))) = −A = A · (−I) = φ(1, 0)φ(0, 1).
Clearly φ is bijective from construction, therefore it is an isomorphism.
Alternatively, one can define ψ : Z × Z → G by ψ(1, 0) = A and ψ(0, 1) = −I
and apply first isomorphism theorem. The kernel in this case would be kerψ =
(2Z)× (2Z) = {(a, b) ∈ Z× Z : a, b ∈ 2Z}.

4. (a) Yes, define φ : (R,+) → (R>0, ·) by φ(x) = ex, we wish to show that φ is an iso-
moprhism. For x, y ∈ (R,+), we have ex−y = ex(ey)−1 so φ is a homomorphism.
Suppose that ex = 1 ∈ R>0, then by injectivity of the exponential function (c.f. cal-
culus) we have that x necessarily equals to 1. As for surjectivity, given any t ∈ R>0,
log(t) is well-defined and we have elog(t) = t. So φ is indeed an isomorphism.

(b) No, suppose on the contrary that there is an isomorphism φ : (Q,+) → (Q>0, ·),
then there exists some a ∈ Q so that φ(a) = 2. This implies that 2 = φ(a) =
φ(a

2
+ a

2
) = φ(a

2
)2. So we have (a

2
) ∈ Q>0 is a rational number whose square is 2,

which is absurd.



5. Recall that by proposition 6.4.2 from the lecture note, Zm × Zn
∼= Zmn if and only if

gcd(m,n) = 1. In our case, this implies that Z2 × Z12
∼= Z2 × Z3 × Z4

∼= Z6 × Z4 since
gcd(3, 4) = gcd(3, 2) = 1.

6. (a) Note that ϕ : G→ G defined by ϕ(g) = g−1 is a group homomorphism iff ϕ(gh) =
(gh)−1 = h−1g−1 = g−1h−1 = ϕ(g)ϕ(h) for any g, h ∈ G iff g′h′ = h′g′ for any
g′, h′ ∈ G iff G is abelian.

(b) Note that ϕ : G → G defined by ϕ(g) = g2 is a group homomorphism iff ϕ(gh) =
(gh)2 = ghgh = g2h2 = φ(g)φ(h) for any g, h ∈ G iff hg = gh for any g, h ∈ G
(by cancelling g on the left and h on the right) iff G is abelian.

7. (a) Let ϕ, ψ be automorphisms, then by Q2, ϕ−1 is also a bijective group homomor-
phism from G to itself, hence it is an automorphism again, and ϕ ◦ ψ is also a
bijective homomorphism. This shows that Aut(G) is closed under the group opera-
tion and taking inverse. Composition is always associative. And it is clear that the
identity function is an automorphism, therefore Aut(G) is a group.

(b) Note that for any a, b ∈ G we have ig(ab−1) = g(ab)g−1 = gag−1gb−1g−1 =
(gag−1)(gbg−1)−1 = ig(a)ig(b)

−1. Therefore, ig is a group homomorphism, its
inverse is given by ig−1 , since ig ◦ ig−1(a) = gg−1ag−1g = id(a). So ig is an
automorphism.

(c) It is clear that Inn(G) is a subgroup, since ig ◦ ih = igh and i−1
g = ig−1 , so it is closed

under compositions and inverses. To show that it is normal, let ϕ be an automor-
phism, and consider ϕ ◦ ig ◦ ϕ−1(a) = ϕ(gϕ−1(a)g−1) = ϕ(g)ϕ(ϕ−1(a))ϕ(g−1) =
ϕ(g)aϕ(g)−1 = iϕ(g)(a). This means that any conjugation of inner automorphism
is again an inner automorphism, i.e. ϕInn(G)ϕ−1 ≤ Inn(G) for any ϕ ∈ Aut(G),
thus Inn(G) is normal.

Optional Part

1. (a) Consider 12 = 52 = 72 = 112 = 132 = 172 = 192 = 232 = 1 in G, so every
element has order 2. This impliesG is not isomorphic to Z8 since there is an element
of order 8 in Z8, which does not exist in G.

(b) The answer is (iii). As we observed above, every element has order 2 in G, in the
three choices, only (iii) satisfies the above condition.

2. Suppose that G = ⟨g⟩, then for any isomorphism ϕ : G → G′, for any g′ ∈ G′, there
exists some h ∈ G so that ϕ(h) = g′, but then h = gk for some k ∈ Z, therefore g′ =
ϕ(h) = ϕ(gk) = ϕ(g)k. Thus every element in G′ is a power of ϕ(g), so G′ = ⟨ϕ(g)⟩.

3. Let G be a non-abelian group of order 6, if G has an element of order 6, then it is cyclic,
and hence abelian, this gives rise to a contradiction. Thus G has no element of order 6,
but every element has order dividing 6, so there must be elements of order 2 or 3. Note
that the order 3 elements come in pairs, i.e. for every order 3 subgroup, there are two
generators. Therefore, it is impossible for all non-identity elements in G to have order
3. So there exists some order 2 element x ∈ G. Now consider the order 2 subgroup
H = {e, x} ≤ G. If it is a normal subgroup, let aH be a generator of G/H ∼= Z3, then
a3H = H , i.e. a3{e, x} = {e, x}. There are two possibilities, either a3 = e or a3 = x.



If a3 = e, then we have a is of order 3 in G, with axa−1 = x. Thus ax has order 6,
which is a contradiction. Otherwise, a3 = x and a6 = e, it is impossible for a2 = e
since that would imply (aH)2 = H ∈ G/H . In this case, a has order 6, which is again a
contradiction.

Thus, H must be an order 2 subgroup of G that is not normal. Therefore G permutes
the left cosets of H in G, i.e. we consider X the set of left cosets of H in G, and
define φ : G → Sym(X) ∼= S3 by φ(g) : X → X sending a coset aH to (ga)H . We
claim that φ is a group isomorphism. It is a homomorphism since φ(g) ◦ φ(g′)(aH) =
φ(g)(g′aH) = gg′aH = φ(gg′)(aH), and φ(g) ◦ φ(g−1)(aH) = gg−1aH = id(aH).
To prove that φ defines an isomorphism, it suffices to show that it is injective, then by
|G| = |S3| = 6, we can conclude that φ is bijective. Suppose that φ(g) = id the
identity permutation, then in particular φ(g)(H) = gH = H , therefore g ∈ H = {e, x}.
Furthermore, φ(g)(aH) = gaH = aH , so that ga ∈ aH , i.e. a−1ga ∈ H . Since H is
not normal, there exists some a ∈ G so that a−1xa ̸∈ H . Therefore the only element
satisfying this condition is the identity, so kerφ = {e}. This completes the proof.

4. (a) Let k, l ∈ Z, then ϕ(k+(−l)) = k + (−l) = k + (−l) = ϕ(k)+ (−ϕ(l)), therefore
ϕ defines a group homomorphism.

(b) kerϕ = {k ∈ Z : k = 0 ∈ Zn} = {k ∈ Zn : k = n · a, a ∈ Z} = nZ.
Since ϕ is surjective, by the first isomorphism theorem Z/ kerϕ ∼= Zn, therefore
|Z/ kerϕ| = [Z : kerϕ] = |Zn| = n.

(c) Any group homomorphism ψ : Zn → Z is trivial, i.e. there exists unique homomor-
phism ψ : Zn → Z, which is given by ψ(1) = 0. The reason is that Zn is cyclic, so
to give a homomorphism ψ : Zn → Z, it suffices to provide ψ(1) = k ∈ Z, then by
property of homomorphism, ψ(i) = ki is required to hold. If ψ(1) = k, since n = 0
in Zn, we have ψ(n) = kn = 0, this implies that k = 0, as claimed.

5. We will treat the question generally and prove that Um is in fact isomorphic to Zm, so
both (a) and (b) are essentially asking for the number of automorphisms of Zm. Consider
the homomorphism φm : Z → Um defined by n 7→ e2πin/m. This is well-defined because
(e2πin/m)m = e2πin = 1. This is a homomorphism because φm(n + k) = e2πi(n+k)/m =
e2πin/m · e2πik/m = φm(n)φm(k); and φm(−n) = e−2πin/m = φm(n)

−1.

We know that φm is surjective since every m-th root of unity can be written as e2πin/m

for some n ∈ Z. The kernel is given by {n ∈ Z : e2πin/m = 1} = {n ∈ Z : n =
km for some k ∈ Z} = mZ. Thus we have Z/mZ ∼= Um by the first isomorphism
theorem, the former is isomorphic to Zm by Q4.

Now to determine the number of automorphisms of Zm. Note that since Zm is cyclic, by
Q2 it must send the generator 1 to another generator k ∈ Zm. Note that this determines
the automorphism uniquely, since φ(1) = k would force φ(j) = jk for all j ∈ Zm. Con-
versely, if k is a generator, then defining φ by φ(1) = k always gives an automorphism
since this map is always bijective. Therefore the number of automorphisms is equal to the
number of generators in Zm, this is given by Euler’s totient function ϕ. For prime m = p,
there are ϕ(p) = p − 1 many generators, namely every element except 0 ∈ Zp. As for
composite m, ϕ(m) = m · Πp|m(1 − 1/p) where the product runs over all distinct prime
factors of m. So we have ϕ(5) = 4 and ϕ(12) = 4.



6. Reflexivity: G ∼= G because the identity map is an isomorphism from G to itself.

Symmetry: If G ∼= G′, then there exists isomorphism ϕ : G→ G′, by Q2, ϕ−1 : G′ → G
is also an isomorphism, so G′ ∼= G.

Transitivity: If G ∼= G′ and G′ ∼= G′′, then there exists isomorphisms ϕ : G → G′ and
ψ : G′ → G′′, then ψ ◦ ϕ : G→ G′′ is again an isomorphism, so that G ∼= G′′.

7. (a) By assumption that G = ⟨S⟩, we can express every element g ∈ G by am1
1 · · · amk

k

where k ∈ Z>0, ai ∈ S and mi ∈ Z. Then µ(g) = µ(a1)
m1 · · ·µ(ak)mk =

λ(a1)
m1 · · ·λ(ak)mk = λ(g). Since g is arbitrary, so we have µ = λ.

(b) We have explained this in Q5 already. The order of Aut(Z15) is the number of
generators in Z15, which is given by ϕ(15) = 8.


